Classical and Quantum Algorithms for Tensor Principal Component Analysis
نویسندگان
چکیده
منابع مشابه
Principal Component Analysis with Tensor Train Subspace
Tensor train is a hierarchical tensor network structure that helps alleviate the curse of dimensionality by parameterizing large-scale multidimensional data via a set of network of low-rank tensors. Associated with such a construction is a notion of Tensor Train subspace and in this paper we propose a TTPCA algorithm for estimating this structured subspace from the given data. By maintaining lo...
متن کاملTensor principal component analysis via convex optimization
This paper is concerned with the computation of the principal components for a general tensor, known as the tensor principal component analysis (PCA) problem. We show that the general tensor PCA problem is reducible to its special case where the tensor in question is supersymmetric with an even degree. In that case, the tensor can be embedded into a symmetric matrix. We prove that if the tensor...
متن کاملGradient Algorithms for Principal Component Analysis
The problem of princip~l component analysis of a symmetric matrix (finding a p-dimensional eigenspace associated with the largest p eigenvalues) can be viewed as a smooth optimization problem on a homogeneous space. A solution in terms of the limiting value of a continuous-time dynamical system is presented, A discretization of the dynamical system is proposed that exploits the geometry of the ...
متن کاملSparse Principal Component Analysis: Algorithms and Applications
Sparse Principal Component Analysis: Algorithms and Applications
متن کاملLow complexity adaptive algorithms for Principal and Minor Component Analysis
Article history: Available online xxxx
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum
سال: 2020
ISSN: 2521-327X
DOI: 10.22331/q-2020-02-27-237